
SYSTEMS ANALYSIS & DESIGN

 An Object-Oriented Approach with UML

5 T H E D I T I O N

D E N N I S W I X O M T E G A R D E N

Visible Analyst is a “hands-on” tool for teaching students all aspects of analysis and design
including dynamic rules, consistency checking, managing change, and understanding the integration
issues across an IT project. Visible Analyst prepares students to enter the IT world as business or
data architects, analysts, designers, and modelers.

Visit us at www.visible.com to learn more.

YOU CAN Start Today
with the Visible Analyst!

Only takes 2 minutes to install!

Save… 33% discount!

Please visit
http://store.visible.com/Wiley.aspx
to purchase and register with your
information (see below) and obtain a
valid license for your student edition of
the software. To purchase the discounted
software you will need to enter the
following code:

978112014

Email support is provided to all registered
students at support@visible.com. Your
registration includes

 the latest release of the Visible Analyst
Student Edition (software)

 the Visible Analyst eTutorial
 a preloaded Sample Instructional

Project
 access to Webcast “How to” and “Get

Started” Instructional Videos.

Visible Analyst Student Edition

Educating tomorrow’s developers today

Disclaimer: The publisher of the textbook does not sponsor, review, or make decisions about Visible Analyst software,
and will not be responsible for, or involved in, any changes to the software.

 System Analysis & Design
 A n O bject -O riented A pproach with UML

 Fif h Edition

 Alan Dennis
 Indiana University

 Barbara Haley Wixom
 Massachusetts Institute of Technology

 David Tegarden
 Virginia Tech

 With contributions by Elaine Seeman,
East Carolina University

VP & EXECUTIVE PUBLISHER: Don Fowley
EXECUTIVE EDITOR: Beth Lang Golub
CONTENT EDITOR: Mary O’Sullivan
ASSOCIATE EDITOR: Ellen Keohane
MARKETING MANAGER: Christopher Ruel
ASSOCIATE PRODUCTION MANAGER: Joyce Poh
DESIGNER: Wendy Lai

Cover Image: © Christopher Boswell/Shutterstock

 T is book was set in 10/12 Minion pro by Aptara and printed and bound by Courier Kendallville. T e cover
was printed by Courier Kendallville.

 T is book is printed on acid-free paper .

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulf ll their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global ef ort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specif cations and procurement, ethical conduct within our business and among our vendors, and
community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2015, 2012, 2009 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photo-
copying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of
the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923
(Web site: www.copyright.com). Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008,
or online at: www.wiley.com/go/permissions.

 Evaluation copies are provided to qualif ed academics and professionals for review purposes only, for use in
their courses during the next academic year. T ese copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at: www.wiley.com/go/returnlabel. If you have
chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy.
Outside of the United States, please contact your local sales representative.

 Library of Congress Cataloging-in-Publication Data

 Dennis, Alan.
 Systems analysis & design : an object-oriented approach with UML/Alan Dennis, Indiana University,
Barbara Haley Wixom, Massachusetts Institute of Technology, David Tegarden, Virginia Tech; with
contributions by Elaine Seeman, East Carolina University.–Fif h edition.
 pages cm
 Includes bibliographical references and index.

 ISBN 978-1-118-80467-4 (pbk. : alk. paper)
 1. System analysis. 2. System design. 3. UML (Computer science) I. Wixom, Barbara Haley,
 1969-II. Tegarden, David Paul. III. Seeman, Elaine. IV. Title. V. Title: System analysis and design.
 QA402.D395 2015
 004.2’1–dc23

 2014048338

 Printed in the United States of America

 10 9 8 7 6 5 4 3 2 1

 PURPOSE OF THIS BOOK
 Systems Analysis and Design (SAD) is an exciting, active f eld in which analysts continually
learn new techniques and approaches to develop systems more ef ectively and ef ciently.
However, there is a core set of skills that all analysts need to know—no matter what
approach or methodology is used. All information systems projects move through the four
phases of planning, analysis, design, and implementation; all projects require analysts to
gather requirements, model the business needs, and create blueprints for how the system
should be built; and all projects require an understanding of organizational behavior con-
cepts like change management and team building. Today, the cost of developing modern
sof ware is composed primarily of the cost associated with the developers themselves and
not the computers. As such, object-oriented approaches to developing information systems
hold much promise in controlling these costs.

 Today, the most exciting change to systems analysis and design is the move to
object-oriented techniques, which view a system as a collection of self-contained objects
that have both data and processes. T is change has been accelerated through the crea-
tion of the Unif ed Modeling Language (UML). UML provides a common vocabulary of
object-oriented terms and diagramming techniques that is rich enough to model any sys-
tems development project from analysis through implementation.

 T is book captures the dynamic aspects of the f eld by keeping students focused on
doing SAD while presenting the core set of skills that we feel every systems analyst needs to
know today and in the future. T is book builds on our professional experience as systems
analysts and on our experience in teaching SAD in the classroom.

 T is book will be of particular interest to instructors who have students do a major
project as part of their course. Each chapter describes one part of the process, provides
clear explanations on how to do it, gives a detailed example, and then has exercises for the
students to practice. In this way, students can leave the course with experience that will
form a rich foundation for further work as a systems analyst.

 OUTSTANDING FEATURES

 A Focus on Doing SAD
 T e goal of this book is to enable students to do SAD—not just read about it, but under-
stand the issues so that they can actually analyze and design systems. T e book introduces
each major technique, explains what it is, explains how to do it, presents an example, and
provides Your Turn opportunities with each chapter for students to practice each new tech-
nique before they do it for real in a project. T e Your Turn boxes are posted online at www.
wiley.com/college/dennis. Af er reading each chapter, the student will be able to perform
that step in the system development process.

P R E F A C E

v

vi Preface

 Rich Examples of Success and Failure
 T is book has a running online case study (accessible from www.wiley.com/go/dennis/
casestudy) about a f ctitious health care company called Patterson Superstore. Each chapter of
the case study shows how the concepts are applied in situations at Patterson Superstore. In
this way, the running case serves as a template that students can apply to their own work.
Each chapter also includes numerous Concepts in Action boxes, which are posted online at
www.wiley.com/college/dennis. T ese boxes describe how real companies succeeded—and
failed—in performing the activities in the chapter. Many of these examples are drawn from
our own experiences as systems analysts.

 Real World Focus
 The skills that students learn in a systems analysis and design course should mirror
the work that they ultimately will do in real organizations. We have tried to make this
book as “real” as possible by building extensively on our experience as professional sys-
tems analysts for organizations, such as Arthur Andersen, IBM, the U.S. Department
of Defense, and the Australian Army. We have also worked with a diverse industry
advisory board of IS professionals and consultants in developing the book and have
incorporated their stories, feedback, and advice throughout. Many students who use
this book will eventually use the skills on the job in a business environment, and we
believe they will have a competitive edge in understanding what successful practition-
ers feel is relevant in the real world.

 Project Approach
 We have presented the topics in this book in the order in which an analyst encounters them
in a typical project. Although the presentation is necessarily linear (because students have
to learn concepts in the way in which they build on each other), we emphasize the iterative,
complex nature of SAD as the book unfolds. T e presentation of the material should align
well with courses that encourage students to work on projects because it presents topics as
students need to apply them.

 WHAT’S NEW IN THIS EDITION
 ■ A completely new, expanded case study on an integrated health clinic delivery

system has been written to accompany the f f h e dition. T e entire case study is
posted online. At the end of each chapter in the text, a short synopsis of the case
is provided.

 ■ T e text has been streamlined to focus on the essentials and therefore, to enhance
student understanding. Selected m aterial s like the “Your Turn” and “Concepts in
Action” boxes have been moved online and can be accessed at www.wiley.com/
college/dennis .

 ■ T roughout the book , there is a greater emphasis on verifying, validating, and
testing, as well as the incremental and iterative development of systems.

 ■ In Chapter 2, there is more content on Agile techniques , including scrum meet-
ings, product backlog, and sprints.

 ■ In Chapter 3, we have increased focus on sof ware quality and user stories.
 ■ We have added new examples throughout the book and clarif ed explanations to

help students learn some of the more dif cult concepts.

Preface vii

 ■ Chapter 10 includes more coverage of mobile computing , including specif cs on
navigation, input, and output. T is chapter also has a new section on games,
multidimensional information visualization, augmented reality, and virtual reality.

 ■ Chapter 11 includes new material o n ubiquitous computing and the Internet of T ings.
 ■ Testing has been expanded in Chapter 12.

 ORGANIZATION OF THIS BOOK
 T is book is loosely organized around the phases and workf ows of the enhanced Unif ed
Process. Each chapter has been written to teach students specif c tasks that analysts need
to accomplish over the course of a project, and the deliverables that will be produced from
the tasks. As students complete the chapters, they will realize the iterative and incremental
nature of the tasks in object-oriented systems development.

 Chapter 1 introduces the SDLC, systems development methodologies, roles and
skills needed for a systems analyst, the basic characteristics of object-oriented systems,
object-oriented systems analysis, the Unif ed Process, and the UML. Chapter 2 presents
topics related to the project management workf ow of the Unif ed Process, including pro-
ject identif cation, system request, feasibility analysis, project selection, traditional project
management tools (including work breakdown structures, network diagrams, and PERT
analysis), project ef ort estimation using use-case points, evolutionary work breakdown
structures, iterative workplans, scope management, timeboxing, risk management, and
staf ng the project. Chapter 2 also addresses issues related to the Environment and Infra-
structure management workf ows of the Unif ed Process.

 Part One focuses on creating analysis models. Chapter 3 introduces students to an assort-
ment of requirements analysis strategies a variety of requirements-gathering techniques that
are used to determine the functional and nonfunctional requirements of the system, and to a
 system proposal. Chapter 4 focuses on constructing business process and functional models
 using use - case diagrams, activity diagrams, and use - case descriptions. Chapter 5 addresses
 producing structural models using CRC cards, class diagrams, and object diagrams. Chapter 6
tackles creating behavioral models using sequence diagrams, communication diagrams,
 behavioral state machines, and CRUDE analysis and matrices. Chapters 4 through 6 also
cover the verif cation and validation of the models described in each chapter.

 Part Two addresses design modeling. In Chapter 7, students learn how to verify and
validate the analysis models created during analysis modeling and to evolve the analysis
models into design models via the use of factoring, partitions, and layers. T e students also
learn to create an alternative matrix that can be used to compare custom, packaged, and
outsourcing alternatives. Chapter 8 concentrates on designing the individual classes and
their respective methods through the use of contracts and method specif cations. Chapter 9
presents the issues involved in designing persistence for objects. T ese issues include the
dif erent storage formats that can be used for object persistence, how to map an object-
oriented design into the chosen storage format, and how to design a set of data access and
manipulation classes that act as a translator between the classes in the application and
the object persistence. T is chapter also focuses on the nonfunctional requirements that
impact the data management layer. Chapter 10 presents the design of the human–computer
interaction layer, where students learn how to design user interfaces using use scenarios,
windows navigation diagrams, storyboards, windows layout diagrams, user interface
prototypes, real use cases, interface standards, and user interface templates; to perform
user interface evaluations using heuristic evaluation, walkthrough evaluation, interactive
evaluation, and formal usability testing; and to address nonfunctional requirements such

viii Preface

as user interface layout, content awareness, aesthetics, user experience, and consistency.
T is chapter also addresses issues related to mobile computing, social media, games,
multi dimensional information visualizations, immersive environments, and international
and cultural issues with regard to user interface design. Chapter 11 focuses on the phys-
ical architecture and infrastructure design, which includes deployment diagrams and
 hardware/sof ware specif cation. In today’s world, this also includes issues related to cloud
computing, ubiquitous computing, the Internet of things, and green IT. T is chapter, like
the previous design chapters, covers the impact that nonfunctional requirements can have
on the physical architecture layer.

 Part T ree provides material that is related to the construction, installation, and operations
 of the system. Chapter 12 focuses on system construction, where students learn how to build,
test, and document the system. Installation and operations are covered in Chapter 13, where
students learn about the conversion plan, change management plan, support plan, and project
assessment. Additionally, these chapters address the issues related to developing systems in a f at
world, where developers and users are distributed throughout the world.

 SUPPLEMENTS www.wiley.com/college/dennis

 Instructor Book Companion Web s ite
 ■ PowerPoint slides : I nstructors can tailor the slides to their classroom needs .

S tudents can use them to guide their reading and studying activities.
 ■ Test Bank : I ncludes a variety of questions ranging from multiple-choice, true/

false, and short answer questions. A computerized, Respondus version of the Test
Bank is also available.

 ■ Instructor’s Manual : P rovides resources to support the instructor both inside
and out of the classroom. T e manual includes short experiential exercises that
instr uctors can use to help students experience and understand key topics in
each chapter. Short stories have been provided by people working in both corpo-
rate and consulting environments for instructors to insert into lectures to make
concepts more colorful and real. Additional minicases for every chapter allow
students to perform some of the key concepts that were learned in the chapter.
 Solutions to end of chapter questions and exercises are provided.

 Student Book Companion Web s ite
■ A collection of templates and worksheets consisting of electronic versions of

selected f gures from the book.
■ A completely new, expanded case study on an integrated health clinic delivery

system has been written to accompany the f f h edition. T is case study is online
only. It can be accessed at www.wiley.com/go/dennis/casestudy .

■ “Your Turn” and “Concepts in Action” boxes from the fourth edition have been
moved online and can be accessed from the student companion site.

 Wiley E-Text: Powered by VitalSource
 T is Wiley e-text of ers students continuing access to materials for their course. Your students
can access content on a mobile device, online from any Internet-connected computer, or by
a computer via download. With dynamic features built into this e-text, students can search
across content, highlight, and take notes that they can share with teachers and classmates.

Preface ix

 Visible Analyst
 Wiley has partnered with Visible Analyst to give students a discounted price for Visible
Analyst sof ware, an intuitive modeling tool for all aspects of traditional or object-oriented
systems analysis and design. All new copies of the text will have a Key Code (printed on
a page near the front of this text) that will provide a discount on Visible Analyst sof ware.
To obtain the sof ware, students should visit http://store.visible.com/Wiley.aspx and enter
their Key Code. Students who buy a new print text or digital e-book will receive one-third
of the price of a downloadable edition of the sof ware with a 6-month license. With the
sof ware, they will also receive tutorials, how-to videos, and a sample project. Students who
buy used copies of this text may buy Visible Analyst at full price using the URL provided.

 Project Management Sof ware
 You can download a 60-day trial of Microsof Project Professional 2013 from the following
Web site: www.microsof .com/en-us/evalcenter/evaluate-project-professional-2013 . Note
that Microsof has changed its policy and no longer of ers the 120-day trial previously
available.

 Another option now available to education institutions adopting this Wiley titl e is a
free introductory 3-year membership for DreamSpark Premium. DreamSpark Premium
is designed to provide the easiest and most inexpensive way for academic departments
to make the latest Microsof sof ware available in labs, classrooms, and on student and
instructor PCs. Microsof Project sof ware is available through this Wiley and Microsof
publishing partnership, free of charge with the adoption of any qualif ed Wiley title. Each
copy of Microsof Project is the full version of the sof ware, with no time limitation, and
can be used indef nitely for educational purposes. Contact your Wiley sales representative
for details. For more information about the DreamSpark Premium program, contact
drmspkna@Microsof .com .

 ACKNOWLEDGMENTS
 T anks to Elaine Seeman for her feedback on every chapter in this book as well as for her
work writing the new online case study. We would like to thank the following reviewers
for their helpful and insightful comments on the f f h edition: Mohammad Dadashzadeh,
Oakland University; Xiaodong Deng, Oakland University ; T omas W. Dillon, James
Madison University; Bryan Goda, University of Washington, Tacoma; Kathleen S. Hartzel,
Duquesne University; Rajkumar Kempaiah, Stevens Institute of Technology; Sung-kwan
Kim, University of Arkansas at Little Rock; Richard McCarthy, Quinnipiac University;
Donald McCracken, Grantham University; Osama A. Morad, Southern New Hampshire
University; Fred Niederman, Saint Louis University; Linda Plotnick, Jacksonville State
University; Vladimir V. Riabov, Rivier University ; Richard Schilhavy, Guilford College;
Tod Sedbrook, University of Northern Colorado; Steven C. Shaf er, Penn State University;
Michael Smith, Georgia Institute of Technology; and John Wetsch, Southern New Hampshire
University.

 We would also like to thank the following reviewers for their helpful and insight-
ful comments on the f rst, second, third , and fourth editions: Evans Adams, Fort Lewis
College; Murugan Anandarajon, Drexel University; Ron Anson, Boise State University;
Noushin Ashraf , University of Massachusetts, Boston; Dirk Baldwin, University of
Wisconsin-Parkside; Robert Barker, University of Louisville; Qing Cao, University of
Missouri–Kansas City; David Champion, DeVry University, Columbus, OH campus; Jef
Cummings, Indiana University; Junhua Ding, East Carolina University; Robert Dollinger,

x Preface

University of Wisconsin-Stevens Point; Abhijit Dutt, Carnegie Mellon University; Terry
Fox, Baylor University; Ahmad Ghafarian, North Georgia College & State U niversity; Donald
Golden, Cleve land State University; Cleotilde Gonzalez, Carnegie Melon University;
Daniel V. Goulet, University of Wisconsin–Stevens Point; Harvey Hayashi, Loyalist College
of Applied Arts and Technology; Yujong Hwang, DePaul University; Scott James, Saginaw
Valley State University; Zongliang Jiang, North Carolina A&T State University; Raymond
Kirsch, La Salle University; Rajiv Kishore, State University of New York–Buf alo; Ravindra
 Krovi, University of Akron; Jean-Piere Kuilboer, University of Massachusetts, Boston;
 Gilliean Lee, Lander University; Leo Legorreta, California State University Sacramento;
Diane Lending, James Madison University; Steve Machon, DeVry University; Fernando
 Maymí , West Point University; Daniel Mittleman, DePaulUniversity; Makoto Nakayama,
DePaul University; Fred Niederman, Saint Louis University; Parasuraman Nurani, DeVry
University; H. Robert Pajkowski, DeVry Institute of Technology, Scarborough, Ontario;
June S. Park, University of Iowa; Graham Peace, West Virginia University; Tom Pettay,
DeVry Institute of Technology, Columbus,Ohio; Selwyn Piramuthu, University of Florida;
 J. Drew Procaccino, Rider University; Neil Ramiller, Portland State University; Eliot
Rich, University at Albany, State University of New York; Marcus Rothenberger, University
of Wisconsin–Milwaukee; Carl Scott, University of Houston; Keng Siau,University of
Nebraska–Lincoln; If ikhar Sikder , Cleveland State University; Jonathan Trower, Baylor
University; June Verner, Drexel University; Anna Wachholz, Sheridan College; Bill Watson,
Indiana University- Purdue University Indianapolis; Randy S.Weinberg, Carnegie Mellon
University; Eli J.Weissman, DeVry Institute of Technology, Long Island City, NY; Heinz
Roland Weistrof er, Virginia Commonwealth University; Amy Wilson, DeVry Institute of
Technology, Decatur, GA; Amy Woszczynski, Kennesaw State University; Vincent C. Yen,
Wright State University ; Fan Zhao, Florida Gulf Coast University; and Dan Zhu, Iowa State
University.

xi

C O N T E N T S

Preface v

Chapter 1

Introduction to Systems
Analysis and Design 1
Introduction 1
The Systems Development Life Cycle 2

Planning 3
Analysis 3
Design 4
Implementation 4

Systems Development Methodologies 5
Structured Design 6
Rapid Application Development (RAD) 8
Agile Development 12
Selecting the Appropriate Development

Methodology 15
Typical Systems Analyst Roles and Skills 17

Business Analyst 18
Systems Analyst 18
Infrastructure Analyst 18
Change Management Analyst 19
Project Manager 19

Basic Characteristics of Object-Oriented
Systems 19

Classes and Objects 19
Methods and Messages 20
Encapsulation and Information Hiding 20
Inheritance 21
Polymorphism and Dynamic Binding 22

Object-Oriented Systems Analysis
and Design (OOSAD) 23

Use-Case Driven 24
Architecture-Centric 24
Iterative and Incremental 24
Benef ts of Object-Oriented Systems

Analysis and Design 25
The Unified Process 25

Phases 26
Workf ows 28
Extensions to the Unif ed Process 30

The Unified Modeling Language 34
applying the concepts at patterson

superstore 36
Chapter Review 36

Chapter 2

Project Management 41
Introduction 41
Project Identification 43

System Request 44
Feasibility Analysis 45

Technical Feasibility 45
Economic Feasibility 46
Organizational Feasibility 51

Project Selection 53
Traditional Project Management Tools 54

Work Breakdown Structures 55
Gantt Chart 56
Network Diagram 57

Project Effort Estimation 58
Creating and Managing the Workplan 63

Evolutionary Work Breakdown
Structures and Iterative Workplans 63

Managing Scope 67
Timeboxing 68
Ref ning Estimates 69
Managing Risk 70

Staffing the Project 71
Characteristics of a Jelled Team 71
Staf ng Plan 73
Motivation 75
Handling Conf ict 76

Environment and Infrastructure
Management 76

CASE Tools 77
Standards 77
Documentation 78

Applying the Concepts at Patterson
Superstore 80

Chapter Review 80

■ PART ONE
ANALYSIS MODELING 85
Chapter 3

Requirements
Determination 86
Introduction 86
Requirements Determination 87

Def ning a Requirement 87
Requirements Def nition 89
Determining Requirements 89
Creating a Requirements Def nition 91
Real-World Problems with Requirements

Determination 91
Requirements Analysis Strategies 92

Problem Analysis 92
Root Cause Analysis 92
Duration Analysis 93
Activity-Based Costing 94
Informal Benchmarking 94
Outcome Analysis 95
Technology Analysis 95
Activity Elimination 95

Requirements-Gathering Techniques 95
Interviews 96
Joint Application Development (JAD) 100
Questionnaires 104
Document Analysis 106
Observation 108
Selecting the Appropriate Techniques 108

Alternative Requirements Documentation
Techniques 110

Concept Maps 110
User Stories 112

The System Proposal 113
Applying the Concepts at Patterson

Superstore 114
Chapter review 114

Chapter 4
Business Process and
Functional Modeling 119
Introduction 119
Business Process Identification with Use

Cases and Use-Case Diagrams 121
Elements of Use-Case Diagrams 121
Identifying the Major Use Cases 126

Creating a Use-Case Diagram 127
Business Process Modeling with Activity

Diagrams 129
Elements of an Activity Diagram 131
Guidelines for Creating Activity

Diagrams 136
Creating Activity Diagrams 137

Business Process Documentation with Use
Cases and Use-Case Descriptions 140

Types of Use Cases 141
Elements of a Use-Case Description 141
Guidelines for Creating Use-Case

Descriptions 145
Creating Use Case Descriptions 146

Verifying and Validating the Business
Processes and Functional Models 153

Verif cation and Validation through
Walkthroughs 153

Functional Model Verif cation and
Validation 154

Applying the Concepts at Patterson
Superstore 157

Chapter Review 157

Chapter 5

Structural Modeling 163
Introduction 163
Structural Models 164

Classes, Attributes, and
Operations 164

Relationships 165
Object Identification 166

Textual Analysis 166
Brainstorming 167
Common Object Lists 169
Patterns 169

Crc Cards 172
Responsibilities and Collaborations 172
Elements of a CRC Card 173
Role-Playing CRC Cards with

Use Cases 174
Class Diagrams 176

Elements of a Class Diagram 176
Simplifying Class Diagrams 184
Object Diagrams 184

Creating Structural Models Using
CRC Cards and Class Diagrams 185

Campus Housing Example 187
Library Example 187

xii Contents

Verifying and Validating the Structural
Model 194

Applying the Concepts at Patterson
Superstore 197

Chapter Review 198

Chapter 6

Behavioral Modeling 202
Introduction 202
Behavioral Models 203
Interaction Diagrams 204

Objects, Operations, and Messages 204
Sequence Diagrams 204
Communication Diagrams 216

Behavioral State Machines 221
States, Events, Transitions, Actions, and

Activities 221
Elements of a Behavioral State Machine 222
Creating a Behavioral State Machine 226

Crude Analysis 229
Verifying and Validating the Behavioral

Model 233
Applying the Concepts at Patterson

 Superstore 235
Chapter Review 235

■ PART TWO
DESIGN MODELING 239
Chapter 7

Moving on to Design 240
Introduction 240
Verifying and Validating the Analysis

Models 242
Balancing Functional and Structural

Models 242
Balancing Functional and Behavioral

Models 243
Balancing Structural and Behavioral

Models 251
Summary 254

Evolving the Analysis Models into Design
Models 257

Factoring 257
Partitions and Collaborations 258
Layers 259

Packages and Package Diagrams 262
Guidelines for Creating Package

Diagrams 264
Creating Package Diagrams 266
Verifying and Validating Package

Diagrams 266
Design Strategies 268

Custom Development 268
Packaged Sof ware 269
Outsourcing 270
Selecting a Design Strategy 272

Selecting an Acquisition Strategy 273
Alternative Matrix 274

Applying the Concepts at Patterson
Superstore 276

Chapter Review 276

Chapter 8

Class and Method Design 280
Introduction 280
Review of the Basic Characteristics

of Object Orientation 282
Classes, Objects, Methods, and Messages 282
Encapsulation and Information Hiding 282
Polymorphism and Dynamic Binding 282
Inheritance 284

Design Criteria 286
Coupling 286
Cohesion 289
Connascence 292

Object Design Activities 293
Adding Specif cations 293
Identifying Opportunities for Reuse 294
Restructuring the Design 297
Optimizing the Design 298
Mapping Problem-Domain Classes to

Implementation Languages 300
Constraints and Contracts 304

Types of Constraints 306
Elements of a Contract 306

Method Specification 314
General Information 314
Events 314
Message Passing 315
Algorithm Specif cations 316
Example 318

Verifying and Validating Class and Method
Design 319

Contents xiii

Applying the Concepts at Patterson
Superstore 322

Chapter review 322

Chapter 9

Data Management Layer
Design 326
Introduction 326
Object Persistence Formats 327

Sequential and Random Access Files 327
Relational Databases 330
Object-Relational Databases 332
Object-Oriented Databases 332
NoSQL Data Stores 333
Selecting an Object Persistence Format 335

Mapping Problem Domain Objects to Object
Persistence Formats 337

Mapping Problem Domain Objects to an
OODBMS Format 338

Mapping Problem Domain Objects to an
ORDBMS Format 341

Mapping Problem Domain Objects to a
RDBMS Format 344

Optimizing Rdbms-Based Object
Storage 346

Optimizing Storage Ef ciency 347
Optimizing Data Access Speed 351
Estimating Data Storage Size 356

Designing Data Access and Manipulation
Classes 357

Nonfunctional Requirements and Data
Management Layer Design 360

Verifying and Validating the Data
Management Layer 361

Applying the Concepts at Patterson
Superstore 362

Chapter Review 362

Chapter 10

Human–Computer Interaction
Layer Design 367
Iintroduction 367
Principles for User Interface Design 368

Layout 369
Content Awareness 369

Aesthetics 370
User Experience 371
Consistency 371
Minimizing User Ef ort 372

User Interface Design Process 372
Use Scenario Development 373
Navigation Structure Design 375
Interface Standards Design 376
Interface Design Prototyping 377
Interface Evaluation 380
Common Sense Approach to User

Interface Design 382
Navigation Design 383

Basic Principles 383
Types of Navigation Controls 384
Messages 386
Navigation Design Documentation 387

Input Design 387
Basic Principles 387
Types of Inputs 390
Input Validation 391

Output Design 392
Basic Principles 392
Types of Outputs 394
Media 394

Mobile Computing and User Interface
Design 395

Social Media and User Interface
Design 398

Games, Multi-Dimensional Information
Visualizations, and Immersive
Environments 400

Games, Gamif cation, and User Interface
Design 400

Multidimensional Information Visualization
Design 402

User Interface Design and Immersive
Environments 404

International and Cultural Issues and User
Interface Design 406

Multilingual Requirements 406
Color 407
Cultural Dif erences 407

Nonfunctional Requirements And Human-
Computer Interaction Layer
Design 410

Applying The Concepts At Patterson
Superstore 411

Chapter review 411

xiv Contents

Chapter 11

Physical Architecture Layer
Design 418
Introduction 418
Elements of the Physical Architecture

Layer 419
Architectural Components 419
Server-Based Architectures 420
Client-Based Architectures 420
Client–Server Architectures 421
Client–Server Tiers 422
Selecting a Physical Architecture 424

Cloud Computing 426
Ubiquitous Computing and the Internet

of Things 428
Green IT 431
Infrastructure Design 432

Deployment Diagram 432
Network Model 434

Hardware and System Software
Specifications 438

Nonfunctional Requirements and Physical
Architecture Layer Design 440

Operational Requirements 441
Performance Requirements 442
Security Requirements 444
Cultural and Political Requirements 447
Synopsis 448

Verifying and Validating the Physical
Architecture Layer 449

Applying the Concepts at Patterson
Superstore 450

Chapter Review 450

■ PART THREE
CONSTRUCTION, INSTALLATION,
AND OPERATIONS 455
Chapter 12

Construction 456
Introduction 456
Managing Programming 457

Assigning Programmers 457
Coordinating Activities 458

Managing the Schedule 458
Cultural Issues 460

Developing Documentation 462
Types of Documentation 463
Designing Documentation Structure 463
Writing Documentation Topics 465
Identifying Navigation Terms 465

Designing Tests 467
Testing and Object Orientation 468
Test Planning 469
Unit Tests 471
Integration Tests 475
System Tests 476
Acceptance Tests 477

Applying the Concepts at Patterson
Superstore 478

Chapter Review 478

Chapter 13

Installation and
Operations 481
Introduction 481
Cultural Issues and Information

Technology Adoption 483
Conversion 485

Conversion Style 486
Conversion Location 486
Conversion Modules 487
Selecting the Appropriate Conversion

Strategy 488
Change Management 489

Understanding Resistance to Change 490
Revising Management Policies 491
Assessing Costs and Benef ts 492
Motivating Adoption 493
Enabling Adoption: Training 495

Post-Implementation Activities 497
System Support 497
System Maintenance 498
Project Assessment 500

Applying the Concepts at Patterson
Superstore 502

Chapter Review 502

Index 507

Contents xv

Chapter 1 introduces the systems development life cycle (SDLC), the fundamental four-
phase model (planning, analysis, design, and implementation) common to all information
systems development projects. It describes the evolution of system development method-
ologies and discusses the roles and skills required of a systems analyst. T e chapter then
overviews the basic characteristics of object-oriented systems and the fundamentals of
object-oriented systems analysis and design and closes with a description of the Unif ed
Process and its extensions and the Unif ed Modeling Language.

OBJECTIVES

■ Understand the fundamental systems development life cycle and its four phases
■ Understand the evolution of systems development methodologies
■ Be familiar with the dif erent roles played by and the skills of a systems analyst
■ Be familiar with the basic characteristics of object-oriented systems
■ Be familiar with the fundamental principles of object-oriented systems analysis

and design
■ Be familiar with the Unif ed Process, its extensions, and the Unif ed Modeling

Language

INTRODUCTION
The systems development life cycle (SDLC) is the process of understanding how an infor-
mation system (IS) can support business needs by designing a system, building it, and
delivering it to users. If you have taken a programming class or have programmed on
your own, this probably sounds pretty simple. Unfortunately, it is not. A 1996 survey by
the Standish Group found that 42 percent of all corporate IS projects were abandoned
before completion. A similar study conducted in 1996 by the General Accounting Office
found 53 percent of all U.S. government IS projects were abandoned. Unfortunately,
many of the systems that are not abandoned are delivered to the users significantly late,
cost far more than planned, and have fewer features than originally planned. For exam-
ple, IAG Consulting reports that 80 percent of the projects were over time, 72 percent
were over budget, and 55 percent contained less than the full functionality; Panorama
Consulting Solutions reports that 54 percent of the ERP projects were over time, 56 percent
were over budget, and 48 percent delivered less than 50 percent of the initial benef ts;
and an IBM study reports that 59 percent of the projects missed one or more of on time,
within budget, and quality constraints.1 Although we would like to promote this book as
a silver bullet that will keep you from IS failures, we readily admit that a silver bullet that
guarantees IS development success simply does not exist. Instead, this book provides you

1

C H A P T E R 1

Introduction to Systems
Analysis and Design

2 Chapter 1 Introduction to Systems Analysis and Design

with several fundamental concepts and many practical techniques that you can use to
improve the probability of success.

T e key person in the SDLC is the systems analyst, who analyzes the business situation,
identif es opportunities for improvements, and designs an information system to implement
them. Being a systems analyst is one of the most interesting, exciting, and challenging jobs
around. Systems analysts work with a variety of people and learn how they conduct business.
Specif cally, they work with a team of systems analysts, programmers, and others on a com-
mon mission. Systems analysts feel the satisfaction of seeing systems that they designed and
developed make a signif cant business impact, knowing that they contributed unique skills to
make that happen.

However, the primary objective of a systems analyst is not to create a wonderful sys-
tem; instead, it is to create value for the organization, which for most companies means
increasing prof ts (government agencies and not-for-prof t organizations measure value
dif erently). Many failed systems have been abandoned because the analysts tried to build a
wonderful system without clearly understanding how the system would f t with an organi-
zation’s goals, current business processes, and other information systems to provide value.
An investment in an information system is like any other investment. T e goal is not to
acquire the tool, because the tool is simply a means to an end; the goal is to enable the
organization to perform work better so that it can earn greater prof ts or serve its constit-
uents more ef ectively.

T is book introduces the fundamental skills a systems analyst needs. T is pragmatic book
discusses best practices in systems development; it does not present a general survey of systems
development that covers everything about the topic. By def nition, systems analysts do things
and challenge the current way that organizations work. To get the most out of this book, you
will need to actively apply to your own systems development project the ideas and concepts in
the examples. T is book guides you through all the steps for delivering a successful informa-
tion system. By the time you f nish the book, you won’t be an expert analyst, but you will be
ready to start building systems for real.

THE SYSTEMS DEVELOPMENT LIFE CYCLE
In many ways, building an information system is similar to building a house. First, the house
(or the information system) starts with a basic idea. Second, this idea is transformed into a
simple drawing that is shown to the customer and ref ned (of en through several drawings,
each improving on the last) until the customer agrees that the picture depicts what he or she
wants. T ird, a set of blueprints is designed that presents much more detailed information about
the house (e.g., the type of water faucets or where the telephone jacks will be placed). Finally,
the house is built following the blueprints, of en with some changes directed by the customer
as the house is erected.

T e SDLC has a similar set of four fundamental phases: planning, analysis, design, and
implementation. Dif erent projects might emphasize dif erent parts of the SDLC or approach the
SDLC phases in dif erent ways, but all projects have elements of these four phases. Each phase is
itself composed of a series of steps, which rely upon techniques that produce deliverables (specif c
documents and f les that provide understanding about the project).

1 For more information on the problem, see Capers Jones, Patterns of Sof ware System Failure and Success (London:
International T ompson Computer Press, 1996); KeithEllis, Business Analysis Benchmark: T e Impact of Business
Requirements on the Success of Technology Projects (2008). Retrieved May 2014 from IAG Consulting, www.iag.biz;
H. H. Jorgensen, L. Owen, and A. Neus, Making Change Work (2008). Retrieved May 2014 from IBM, www.ibm.
com; Panorama Consulting Solutions, 2012 ERP Report (2012). Retrieved May 2014 from Panorama- Consulting.com.

The Systems Development Life Cycle 3

For example, in applying for admission to a university, all students go through the same
phases: information gathering, applying, and accepting. Each of these phases has steps; for
example, information gathering includes steps such as searching for schools, requesting infor-
mation, and reading brochures. Students then use techniques (e.g., Internet searching) that
can be applied to steps (e.g., requesting information) to create deliverables (e.g., evaluations
of dif erent aspects of universities).

In many projects, the SDLC phases and steps proceed in a logical path from start to f n-
ish. In other projects, the project teams move through the steps consecutively, incrementally,
iteratively, or in other patterns. In this section, we describe the phases, the actions, and some
of the techniques that are used to accomplish the steps at a very high level.

For now, there are two important points to understand about the SDLC. First, you should
get a general sense of the phases and steps through which IS projects move and some of the
techniques that produce certain deliverables. Second, it is important to understand that the
SDLC is a process of gradual ref nement. T e deliverables produced in the analysis phase pro-
vide a general idea of the shape of the new system. T ese deliverables are used as input to the
design phase, which then ref nes them to produce a set of deliverables that describes in much
more detailed terms exactly how the system will be built. T ese deliverables, in turn, are used
in the implementation phase to produce the actual system. Each phase ref nes and elaborates
on the work done previously.

Planning
T e planning phase is the fundamental process of understanding why an information sys-
tem should be built and determining how the project team will go about building it. It has
two steps:

1. During project initiation, the system’s business value to the organization is identif ed:
How will it lower costs or increase revenues? Most ideas for new systems come from
outside the IS area (e.g., from the marketing department, accounting department) in
the form of a system request. A system request presents a brief summary of a business
need, and it explains how a system that supports the need will create business value.
T e IS department works together with the person or department that generated the
request (called the project sponsor) to conduct a feasibility analysis.

T e system request and feasibility analysis are presented to an information sys-
tems approval committee (sometimes called a steering committee), which decides
whether the project should be undertaken.

2. Once the project is approved, it enters project management. During project man-
agement, the project manager creates a workplan, staf s the project, and puts tech-
niques in place to help the project team control and direct the project through
the entire SDLC. T e deliverable for project management is a project plan, which
describes how the project team will go about developing the system.

Analysis
T e analysis phase answers the questions of who will use the system, what the system will
do, and where and when it will be used. During this phase, the project team investigates any
current system(s), identif es opportunities for improvement, and develops a concept for the
new system.
T is phase has three steps:

1. An analysis strategy is developed to guide the project team’s ef orts. Such a strategy
usually includes an analysis of the current system (called the as-is system) and its
problems and then ways to design a new system (called the to-be system).

4 Chapter 1 Introduction to Systems Analysis and Design

2. T e next step is requirements gathering (e.g., through interviews or questionnaires).
T e analysis of this information—in conjunction with input from the project
sponsor and many other people—leads to the development of a concept for a new
 system. T e system concept is then used as a basis to develop a set of business
 analysis models, which describe how the business will operate if the new system
is developed.

3. T e analyses, system concept, and models are combined into a document called
the system proposal, which is presented to the project sponsor and other key deci-
sion makers (e.g., members of the approval committee) who decide whether the
project should continue to move forward.

T e system proposal is the initial deliverable that describes what business requirements the
new system should meet. Because it is really the f rst step in the design of the new system,
some experts argue that it is inappropriate to use the term “analysis” as the name for this
phase; some argue a better name would be “analysis and initial design.” Most organizations
continue to use the name analysis for this phase, however, so we use it in this book as well. Just
keep in mind that the deliverable from the analysis phase is both an analysis and a high-level
initial design for the new system.

Design
T e design phase decides how the system will operate, in terms of the hardware, sof ware,
and network infrastructure; the user interface, forms, and reports; and the specif c programs,
databases, and f les that will be needed. Although most of the strategic decisions about the
system were made in the development of the system concept during the analysis phase, the
steps in the design phase determine exactly how the system will operate. T e design phase
has four steps:

1. T e design strategy is f rst developed. It clarif es whether the system will be devel-
oped by the company’s own programmers, whether the system will be outsourced
to another f rm (usually a consulting f rm), or whether the company will buy an
existing sof ware package.

2. T is leads to the development of the basic architecture design for the system, which
describes the hardware, sof ware, and network infrastructure to be used. In most
cases, the system will add or change the infrastructure that already exists in the
organization. T e interface design specif es how the users will move through the sys-
tem (e.g., navigation methods such as menus and on-screen buttons) and the forms
and reports that the system will use.

3. T e database and f le specif cations are developed. T ese def ne exactly what data
will be stored and where they will be stored.

4. T e analyst team develops the program design, which def nes the programs that
need to be written and exactly what each program will do.

T is collection of deliverables (architecture design, interface design, database and f le specif ca-
tions, and program design) is the system specif cation that is handed to the programming team
for implementation. At the end of the design phase, the feasibility analysis and project plan are
reexamined and revised, and another decision is made by the project sponsor and approval
committee about whether to terminate the project or continue.

Implementation
T e f nal phase in the SDLC is the implementation phase, during which the system is actually
built (or purchased, in the case of a packaged sof ware design). T is is the phase that usually

Systems Development Methodologies 5

2 T e classic modern process-centered methodology is that by Edward Yourdon, Modern Structured Analysis
 (Englewood Clif s, NJ: Yourdon Press, 1989). An example of a data-centered methodology is information engi-
neering; see James Martin, Information Engineering, vols. 1–3 (Englewood Clif s, NJ: Prentice Hall, 1989). A widely
accepted standardized non–object-oriented methodology that balances processes and data is IDEF; see FIPS 183,
Integration Def nition for Function Modeling, Federal Information Processing Standards Publications, U.S. Depart-
ment of Commerce, 1993.
3 A good reference for comparing systems development methodologies is Steve McConnell, Rapid Development
(Redmond, WA: Microsof Press, 1996).

gets the most attention, because for most systems it is the longest and most expensive single
part of the development process. T is phase has three steps:

1. System construction is the f rst step. T e system is built and tested to ensure that it
performs as designed. Because the cost of bugs can be immense, testing is one of
the most critical steps in implementation. Most organizations give more time and
attention to testing than to writing the programs in the f rst place.

2. T e system is installed. Installation is the process by which the old system is turned
of and the new one is turned on. One of the most important aspects of conversion
is the development of a training plan to teach users how to use the new system and
help manage the changes caused by the new system.

3. T e analyst team establishes a support plan for the system. T is plan usually
includes a formal or informal post-implementation review as well as a systematic
way for identifying major and minor changes needed for the system.

SYSTEMS DEVELOPMENT METHODOLOGIES
A methodology is a formalized approach to implementing the SDLC (i.e., it is a list of steps
and deliverables). T ere are many dif erent systems development methodologies, and each
one is unique, based on the order and focus it places on each SDLC phase. Some methodolo-
gies are formal standards used by government agencies, whereas others have been developed
by consulting f rms to sell to clients. Many organizations have internal methodologies that
have been honed over the years, and they explain exactly how each phase of the SDLC is to
be performed in that company.

T ere are many ways to categorize methodologies. One way is by looking at whether
they focus on business processes or the data that support the business. A process-centered
methodology emphasizes process models as the core of the system concept. In Figure 1-1, for
example, process-centered methodologies would focus f rst on def ning the processes (e.g.,
assemble sandwich ingredients). Data-centered methodologies emphasize data models as the
core of the system concept. In Figure 1-1, data-centered methodologies would focus f rst on
def ning the contents of the storage areas (e.g., refrigerator) and how the contents were organ-
ized.2 By contrast, object-oriented methodologies attempt to balance the focus between process
and data by incorporating both into one model. In Figure 1-1, these methodologies would
focus f rst on def ning the major elements of the system (e.g., sandwiches, lunches) and look
at the processes and data involved with each element.

Another important factor in categorizing methodologies is the sequencing of the SDLC
phases and the amount of time and ef ort devoted to each.3 In the early days of computing,
programmers did not understand the need for formal and well-planned life-cycle meth-
odologies. T ey tended to move directly from a very simple planning phase right into the
construction step of the implementation phase—in other words, from a very fuzzy, not-well-
thought-out system request into writing code. T is is the same approach that you sometimes
use when writing programs for a programming class. It can work for small programs that

6 Chapter 1 Introduction to Systems Analysis and Design

require only one programmer, but if the requirements are complex or unclear, you might
miss important aspects of the problem and have to start all over again, throwing away part of
the program (and the time and ef ort spent writing it). T is approach also makes teamwork
dif cult because members have little idea about what needs to be accomplished and how to
work together to produce a f nal product. In this section, we describe three dif erent classes of
system development methodologies: structured design, rapid application development, and
agile development.

Structured Design
T e f rst category of systems development methodologies is called structured design.
T ese methodologies became dominant in the 1980s, replacing the previous ad hoc and

FIGURE 1-1 A Simple Behavioral Model for Making a Simple Lunch

GetJelly

GetPeanutButter

GetCookies

GetBread

CreateSandwich

GetMilk

CreateLunch

GetLunchBag

PutLunchInBag

aParent aRefrigerator aCupboard aSandwich aLunch aLunchBag

Systems Development Methodologies 7

undisciplined approach. Structured design methodologies adopt a formal step-by-step
approach to the SDLC that moves logically from one phase to the next. Numerous pro-
cess-centered and data-centered methodologies follow the basic approach of the two struc-
tured design categories outlined next.

Waterfall Development T e original structured design methodology (still used today) is
waterfall development. With waterfall development-based methodologies, the analysts and
users proceed in sequence from one phase to the next (see Figure 1-2). T e key deliverables
for each phase are typically very long (of en hundreds of pages in length) and are presented to
the project sponsor for approval as the project moves from phase to phase. Once the sponsor
approves the work that was conducted for a phase, the phase ends and the next one begins.
T is methodology is referred to as waterfall development because it moves forward from
phase to phase in the same manner as a waterfall. Although it is possible to go backward in
the SDLC (e.g., from design back to analysis), it is extremely dif cult (imagine yourself as a
salmon trying to swim upstream against a waterfall, as shown in Figure 1-2).

Structured design also introduced the use of formal modeling or diagramming tech-
niques to describe the basic business processes and the data that support them. Traditional
structured design uses one set of diagrams to represent the processes and a separate set of
diagrams to represent data. Because two sets of diagrams are used, the systems analyst must
decide which set to develop f rst and use as the core of the system: process-model diagrams
or data-model diagrams.

T e two key advantages of the structured design waterfall approach are that it identi-
f es system requirements long before programming begins and it minimizes changes to the
requirements as the project proceeds. T e two key disadvantages are that the design must
be completely specif ed before programming begins and that a long time elapses between the
completion of the system proposal in the analysis phase and the delivery of the system (usu-
ally many months or years). If the project team misses important requirements, expensive
post-implementation programming may be needed (imagine yourself trying to design a car
on paper; how likely would you be to remember interior lights that come on when the doors
open or to specify the right number of valves on the engine?). A system can also require
signif cant rework because the business environment has changed from the time when the
analysis phase occurred.

FIGURE 1-2
A Waterfall
Development-Based
Methodology

System

Planning

Analysis

Design

Implementation

8 Chapter 1 Introduction to Systems Analysis and Design

Parallel Development Parallel development methodology attempts to address the problem
of long delays between the analysis phase and the delivery of the system. Instead of doing
design and implementation in sequence, it performs a general design for the whole system
and then divides the project into a series of distinct subprojects that can be designed and
implemented in parallel. Once all subprojects are complete, the separate pieces are integrated
and the system is delivered (see Figure 1-3).

T e primary advantage of this methodology is that it can reduce the time to deliver a
system; thus, there is less chance of changes in the business environment causing rework.
However, sometimes the subprojects are not completely independent; design decisions
made in one subproject can af ect another, and the end of the project can require signif cant
integration ef orts.

Rapid Application Development (RAD)
A second category of methodologies includes rapid application development (RAD)-based
methodologies. T ese are a newer class of systems development methodologies that emerged
in the 1990s. RAD-based methodologies attempt to address both weaknesses of structured
design methodologies by adjusting the SDLC phases to get some part of the system devel-
oped quickly and into the hands of the users. In this way, the users can better understand the
system and suggest revisions that bring the system closer to what is needed.4

4 One of the best RAD books is Steve McConnell, Rapid Development (Redmond, WA: Microsof Press, 1996).

FIGURE 1-3 A Parallel Development-Based Methodology

System

Planning

Analysis

Design

Implementation

Design

Integration

Implementation

Design

Implementation

Design

Subproject 2

Subproject 1

Subproject 3

Systems Development Methodologies 9

Most RAD-based methodologies recommend that analysts use special techniques
and computer tools to speed up the analysis, design, and implementation phases, such as
computer-aided sof ware engineering (CASE) tools, joint application design (JAD) sessions,
fourth-generation or visual programming languages that simplify and speed up programming,
and code generators that automatically produce programs from design specif cations. T e
combination of the changed SDLC phases and the use of these tools and techniques improves
the speed and quality of systems development. However, there is one possible subtle problem
with RAD-based methodologies: managing user expectations. Owing to the use of the tools and
techniques that can improve the speed and quality of systems development, user expectations
of what is possible can change dramatically. As a user better understands the information tech-
nology (IT), the systems requirements tend to expand. T is was less of a problem when using
methodologies that spent a lot of time thoroughly documenting requirements.

Phased Development A phased development-based methodology breaks an overall system into a
series of versions that are developed sequentially. T e analysis phase identif es the overall system
concept, and the project team, users, and system sponsor then categorize the requirements into
a series of versions. T e most important and fundamental requirements are bundled into the
f rst version of the system. T e analysis phase then leads into design and implementation—but
only with the set of requirements identif ed for version 1 (see Figure 1-4).

Once version 1 is implemented, work begins on version 2. Additional analysis is per-
formed based on the previously identif ed requirements and combined with new ideas and
issues that arose from the users’ experience with version 1. Version 2 then is designed and
implemented, and work immediately begins on the next version. T is process continues until
the system is complete or is no longer in use.

Phased development-based methodologies have the advantage of quickly getting a useful
system into the hands of the users. Although the system does not perform all the functions the
users need at f rst, it does begin to provide business value sooner than if the system were deliv-
ered af er completion, as is the case with the waterfall and parallel methodologies. Likewise,
because users begin to work with the system sooner, they are more likely to identify important
additional requirements sooner than with structured design situations.

T e major drawback to phased development is that users begin to work with systems that
are intentionally incomplete. It is critical to identify the most important and useful features
and include them in the f rst version and to manage users’ expectations along the way.

Prototyping A prototyping-based methodology performs the analysis, design, and imple-
mentation phases concurrently, and all three phases are performed repeatedly in a cycle until
the system is completed. With these methodologies, the basics of analysis and design are
performed, and work immediately begins on a system prototype, a quick-and-dirty program
that provides a minimal amount of features. T e f rst prototype is usually the f rst part of the
system that is used. T is is shown to the users and the project sponsor, who provide com-
ments. T ese comments are used to reanalyze, redesign, and reimplement a second prototype,
which provides a few more features. T is process continues in a cycle until the analysts, users,
and sponsor agree that the prototype provides enough functionality to be installed and used in
the organization. Af er the prototype (now called the “system”) is installed, ref nement occurs
until it is accepted as the new system (see Figure 1-5).

T e key advantage of a prototyping-based methodology is that it very quickly provides a
system with which the users can interact, even if it is not ready for widespread organizational
use at f rst. Prototyping reassures the users that the project team is working on the system
(there are no long delays in which the users see little progress), and prototyping helps to more
quickly ref ne real requirements.

